{ "id": "1908.07155", "version": "v1", "published": "2019-08-20T04:14:28.000Z", "updated": "2019-08-20T04:14:28.000Z", "title": "Extendable shellability for $d$-dimensional complexes on $d+3$ vertices", "authors": [ "Jared Culbertson", "Anton Dochtermann", "Dan P. Guralnik", "Peter F. Stiller" ], "comment": "6 pages", "categories": [ "math.CO", "math.AC", "math.GT" ], "abstract": "We prove that for all $d \\geq 1$ a shellable $d$-dimensional simplicial complex with at most $d+3$ vertices is extendably shellable. The proof involves considering the structure of `exposed' edges in chordal graphs as well as a connection to linear quotients of quadratic monomial ideals.", "revisions": [ { "version": "v1", "updated": "2019-08-20T04:14:28.000Z" } ], "analyses": { "subjects": [ "05E45", "52B22", "13D02", "13F55" ], "keywords": [ "dimensional complexes", "extendable shellability", "dimensional simplicial complex", "quadratic monomial ideals", "chordal graphs" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }