{ "id": "1908.07030", "version": "v1", "published": "2019-08-19T19:09:06.000Z", "updated": "2019-08-19T19:09:06.000Z", "title": "Normal Subgroups of Powerful $p$ -groups", "authors": [ "James Williams" ], "categories": [ "math.GR" ], "abstract": "In this note we show that if $p$ is an odd prime and $G$ is a powerful $p$-group with $N\\leq G^{p}$ and $N$ normal in $G$, then $N$ is powerfully nilpotent. An analogous result is proved for $p=2$ when $N\\leq G^{4}$.", "revisions": [ { "version": "v1", "updated": "2019-08-19T19:09:06.000Z" } ], "analyses": { "subjects": [ "20D15" ], "keywords": [ "normal subgroups", "odd prime", "powerfully nilpotent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }