{ "id": "1908.06704", "version": "v1", "published": "2019-08-19T11:25:24.000Z", "updated": "2019-08-19T11:25:24.000Z", "title": "A CLT for the total energy of the two-dimensional critical Ising model", "authors": [ "Jianping Jiang" ], "comment": "14 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Consider the Ising model on $([1,2N]\\times[1,2M])\\cap\\mathbb{Z}^2$ at critical temperature with periodic boundary condition in the horizontal direction and free boundary condition in the vertical direction. Let $E_{M,N}$ be its total energy (or Hamiltonian). Suppose $M$ is a function of $N$ satisfying $M\\geq N/(\\ln N)^{\\alpha}$ for some $\\alpha\\in[0,1)$. In particular, one may take $M=N$. We prove that \\begin{equation*} \\frac{E_{M,N}+4\\sqrt{2}M N-(4/\\pi)N\\ln N}{\\sqrt{(32/\\pi)MN\\ln N}} \\end{equation*} converges weakly to a standard Gaussian distribution as $N\\rightarrow\\infty$.", "revisions": [ { "version": "v1", "updated": "2019-08-19T11:25:24.000Z" } ], "analyses": { "keywords": [ "two-dimensional critical ising model", "total energy", "periodic boundary condition", "standard gaussian distribution", "free boundary condition" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }