{ "id": "1908.06611", "version": "v1", "published": "2019-08-19T06:39:47.000Z", "updated": "2019-08-19T06:39:47.000Z", "title": "Strong law of large numbers for a function of the local times of a transient random walk in $\\mathbb Z^d$", "authors": [ "I. M. Asymont", "D. Korshunov" ], "categories": [ "math.PR" ], "abstract": "For an arbitrary transient random walk $(S_n)_{n\\ge 0}$ in $\\mathbb Z^d$, $d\\ge 1$, we prove a strong law of large numbers for the spatial sum $\\sum_{x\\in\\mathbb Z^d}f(l(n,x))$ of a function $f$ of the local times $l(n,x)=\\sum_{i=0}^n\\mathbb I\\{S_i=x\\}$. Particular cases are the number of (a) visited sites (first time considered by Dvoretzky and Erd\\H{o}s), which corresponds to a function $f(i)=\\mathbb I\\{i\\ge 1\\}$; (b) $\\alpha$-fold self-intersections of the random walk (studied by Becker and K\\\"{o}nig), which corresponds to $f(i)=i^\\alpha$; (c) sites visited by the random walk exactly $j$ times (considered by Erd\\H{o}s and Taylor and by Pitt), where $f(i)=\\mathbb I\\{i=j\\}$.", "revisions": [ { "version": "v1", "updated": "2019-08-19T06:39:47.000Z" } ], "analyses": { "subjects": [ "60G50", "60J55", "60F15" ], "keywords": [ "strong law", "local times", "large numbers", "arbitrary transient random walk", "spatial sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }