{ "id": "1908.05550", "version": "v1", "published": "2019-08-15T14:02:54.000Z", "updated": "2019-08-15T14:02:54.000Z", "title": "A sharp threshold phenomenon in string graphs", "authors": [ "Istvan Tomon" ], "comment": "21 pages, 6 figures", "categories": [ "math.CO" ], "abstract": "We prove that for every $\\epsilon>0$ there exists $\\delta>0$ such that the following holds. Let $\\mathcal{C}$ be a collection of $n$ curves in the plane such that there are at most $(\\frac{1}{4}-\\epsilon)\\frac{n^{2}}{2}$ pairs of curves $\\{\\alpha,\\beta\\}$ in $\\mathcal{C}$ having a nonempty intersection. Then $\\mathcal{C}$ contains two disjoint subsets $\\mathcal{A}$ and $\\mathcal{B}$ such that $|\\mathcal{A}|=|\\mathcal{B}|\\geq \\delta n$, and every $\\alpha\\in \\mathcal{A}$ is disjoint from every $\\beta\\in\\mathcal{B}$. On the other hand, for every positive integer $n$ there exists a collection $\\mathcal{C}$ of $n$ curves in the plane such that there at most $(\\frac{1}{4}+\\epsilon)\\frac{n^{2}}{2}$ pairs of curves $\\{\\alpha,\\beta\\}$ having a nonempty intersection, but if $\\mathcal{A},\\mathcal{B}\\subset \\mathcal{C}$ are such that $|\\mathcal{A}|=|\\mathcal{B}|$ and $\\alpha\\cap \\beta=\\emptyset$ for every $(\\alpha,\\beta)\\in \\mathcal{A}\\times\\mathcal{B}$, then $|\\mathcal{A}|=|\\mathcal{B}|=O(\\frac{1}{\\epsilon}\\log n)$.", "revisions": [ { "version": "v1", "updated": "2019-08-15T14:02:54.000Z" } ], "analyses": { "keywords": [ "sharp threshold phenomenon", "string graphs", "nonempty intersection", "collection", "disjoint subsets" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }