{ "id": "1908.04723", "version": "v1", "published": "2019-08-13T16:30:53.000Z", "updated": "2019-08-13T16:30:53.000Z", "title": "On the branching rules for Klein four symmetric pairs", "authors": [ "Haian HE" ], "comment": "9 pages, 1 figure", "categories": [ "math.RT" ], "abstract": "Let $G$ be an exceptional simple Lie group of Hermitian type, i.e., $G=\\mathrm{E}_{6(-14)}$ or $\\mathrm{E}_{7(-25)}$, and $(G,G^\\Gamma)$ a Klein four symmetric pair. In this paper, firstly, the author shows that there exists a discrete series representation $\\pi$ of $G$ which is $G^\\Gamma$-admissible if and only if $(G,G^\\Gamma)$ is of holomorphic type. Secondly, the author discusses the discretely decomposable restrictions of $(\\mathfrak{g},K)$-modules for the case when $G^\\Gamma$ is compact. Finally, the author studies a conjecture by Toshiyuki KOBAYASHI for the associated varieties, and confirms the conjecture for certain pairs.", "revisions": [ { "version": "v1", "updated": "2019-08-13T16:30:53.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "symmetric pair", "branching rules", "exceptional simple lie group", "discrete series representation", "author studies" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }