{ "id": "1908.04707", "version": "v1", "published": "2019-08-13T15:45:54.000Z", "updated": "2019-08-13T15:45:54.000Z", "title": "Two-row $W$-graphs in affine type $A$", "authors": [ "Dongkwan Kim", "Pavlo Pylyavskyy" ], "comment": "comments welcome!", "categories": [ "math.CO", "math.RT" ], "abstract": "For affine symmetric groups we construct finite $W$-graphs corresponding to two-row shapes, and prove their uniqueness. This gives the first non-trivial family of examples of finite $W$-graphs in an affine type. We compare our construction with quotients of periodic $W$-graphs defined by Lusztig. Under certain positivity assumption on the latter the two are shown to be isomorphic.", "revisions": [ { "version": "v1", "updated": "2019-08-13T15:45:54.000Z" } ], "analyses": { "keywords": [ "affine type", "affine symmetric groups", "construct finite", "two-row shapes", "positivity assumption" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }