{ "id": "1908.03855", "version": "v1", "published": "2019-08-11T05:15:13.000Z", "updated": "2019-08-11T05:15:13.000Z", "title": "New Transcendental Numbers from Certain Sequences", "authors": [ "Hung Viet Chu" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "We construct three infinite decimals from certain digits of $n^n, n^m$, and $(n!)^m$ (for any fixed $m$) and show that all three are transcendental. In particular, while previous work looked at the last non-zero digit of $n^n$, we look at the digit right before its last non-zero digit. Secondly, we prove the transcendence of the infinite decimal from the last non-zero digit of $n^{4m}$. Finally, we generalize Dresden's result by showing that the decimal from $(n!)^m$ ($m$ not divisible by $4$) is also transcendental. We end with a list of questions for future research.", "revisions": [ { "version": "v1", "updated": "2019-08-11T05:15:13.000Z" } ], "analyses": { "subjects": [ "11B83" ], "keywords": [ "transcendental numbers", "non-zero digit", "infinite decimal", "digit right", "generalize dresdens result" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }