{ "id": "1908.03658", "version": "v1", "published": "2019-08-10T00:53:00.000Z", "updated": "2019-08-10T00:53:00.000Z", "title": "Discrete Measures and the Extended Riemann Hypothesis", "authors": [ "Samuel Estala-Arias" ], "categories": [ "math.NT" ], "abstract": "In this work we show that the Riemann hypothesis for the Dedekind zeta--function $\\zeta_{\\mathrm{K}}(s)$ of an algebraic number field $\\mathrm{K}$ is equivalent to a problem of the rate of convergence of certain discrete measures defined arithmetically on the multiplicative group of positive real numbers to the measure $\\zeta_{\\mathrm{K}}(2)^{-1}\\kappa q dq $, where $\\kappa$ denotes the residue of $\\zeta_{\\mathrm{K}}(s)$ at $s=1$ and $dq$ the Lebesgue measure.", "revisions": [ { "version": "v1", "updated": "2019-08-10T00:53:00.000Z" } ], "analyses": { "keywords": [ "extended riemann hypothesis", "discrete measures", "algebraic number field", "dedekind zeta-function", "positive real numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }