{ "id": "1908.02845", "version": "v1", "published": "2019-08-07T21:23:58.000Z", "updated": "2019-08-07T21:23:58.000Z", "title": "Hyperspaces of infinite compacta with finitely many accumulation points", "authors": [ "Paweł Krupski", "Krzysztof Omiljanowski" ], "comment": "17 pages", "categories": [ "math.GN" ], "abstract": "Vietoris hyperspaces $\\mathcal A_n(X)$ ($\\mathcal A_\\omega(X)$) of infinite compact subsets of a metric space $X$ which have at most $n$ (finitely many, resp.) accumulation points are studied. If $X$ is a dense-in-itself, 0-dimensional Polish space, then $\\mathcal A_n(X)$ is homeomorphic to the product $\\mathbb Q^{\\mathbb N}$. The hyperspaces $\\mathcal A_1(\\mathbb Q,\\{q\\})$ and $\\mathcal A_1(\\mathbb R\\setminus\\mathbb Q,\\{p\\})$ of all $A\\in \\mathcal A_1(\\mathbb Q)$ (resp. $A\\in \\mathcal A_1(\\mathbb R\\setminus\\mathbb Q)$) which accumulate at $q\\in\\mathbb Q$ (resp. $p\\in \\mathbb R\\setminus\\mathbb Q$) are also homeomorphic to $\\mathbb Q^{\\mathbb N}$. If $X$ is a nondegenerate locally connected metric continuum then hyperspaces $\\mathcal A_n(X)$ are absolute retracts for all $n\\in\\mathbb N\\cup\\{\\omega\\}$. If $X=J=[-1,1]$ or $X=S^1$, the hyperspaces $\\mathcal A_n(X)$ are characterized as $F_{\\sigma\\delta}$-absorbers in hyperspaces $\\mathcal K(J)$ and $\\mathcal K(S^1)$ of all compacta in $J$ and $S^1$, respectively. Consequently, they are homeomorphic to the linear space $\\{(x_k) \\in\\mathbb R^{\\mathbb N}: \\lim x_k=0\\}$ with the product topology. The hyperspaces $\\mathcal A_\\omega(X)$ for $X$ being a Euclidean cube, the Hilbert cube, the $m$-dimensional unit sphere $S^m$, $m\\ge 1$, or a compact $m$-manifold with boundary in $S^m$, $m\\ge 3$, are true $F_{\\sigma\\delta\\sigma}$-sets which are strongly $F_{\\sigma\\delta}$-universal in the respective hyperspaces of all compacta.", "revisions": [ { "version": "v1", "updated": "2019-08-07T21:23:58.000Z" } ], "analyses": { "subjects": [ "57N20", "54B20", "54H05" ], "keywords": [ "hyperspaces", "accumulation points", "infinite compacta", "dimensional unit sphere", "infinite compact subsets" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }