{ "id": "1908.02794", "version": "v1", "published": "2019-08-07T18:43:14.000Z", "updated": "2019-08-07T18:43:14.000Z", "title": "Spectrum is rational in dimension one", "authors": [ "Chun-Kit Lai", "Yang Wang" ], "categories": [ "math.FA", "math.CA" ], "abstract": "A bounded measurable set $\\Omega\\subset{\\mathbb R}^d$ is called a spectral set if it admits some exponential orthonormal basis $\\{e^{2\\pi i \\langle\\lambda,x\\rangle}: \\lambda\\in\\Lambda\\}$ for $L^2(\\Omega)$. In this paper, we show that in dimension one $d=1$, any spectrum $\\Lambda$ with $0\\in\\Lambda$ of a spectral set $\\Omega$ with Lebesgue measure normalized to 1 must be rational. Combining previous results that spectrum must be periodic, the Fuglede's conjecture on ${\\mathbb R}^1$ is now equivalent to the corresponding conjecture on all cyclic groups ${\\mathbb Z}_{n}.$", "revisions": [ { "version": "v1", "updated": "2019-08-07T18:43:14.000Z" } ], "analyses": { "keywords": [ "spectral set", "exponential orthonormal basis", "lebesgue measure", "fugledes conjecture", "cyclic groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }