{ "id": "1908.01971", "version": "v1", "published": "2019-08-06T06:06:45.000Z", "updated": "2019-08-06T06:06:45.000Z", "title": "Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials", "authors": [ "Anna Canale", "Francesco Pappalardo", "Ciro Tarantino" ], "categories": [ "math.AP" ], "abstract": "The main results in the paper are the weighted multipolar Hardy inequalities \\begin{equation*} c\\int_{\\R^N}\\sum_{i=1}^n\\frac{u^2}{|x-a_i|^2}\\,d\\mu \\leq\\int_{\\R^N}|\\nabla u |^2d\\mu+ K\\int_{\\R^N} u^2d\\mu, \\end{equation*} in $\\R^N$ for any $u$ in a suitable weighted Sobolev space, with $0