{ "id": "1908.01653", "version": "v1", "published": "2019-08-05T14:48:27.000Z", "updated": "2019-08-05T14:48:27.000Z", "title": "Optimal Lower Bound on the Least Singular Value of the Shifted Ginibre Ensemble", "authors": [ "Giorgio Cipolloni", "László Erdős", "Dominik Schröder" ], "comment": "33 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider the least singular value of a large random matrix with real or complex i.i.d. Gaussian entries shifted by a constant $z\\in\\mathbb{C}$. We prove an optimal lower tail estimate on this singular value in the critical regime where $z$ is around the spectral edge thus improving the classical bound of [Sankar, Spielman, Teng, 2006] in the edge regime. Lacking Br\\'ezin-Hikami formulas in the real case, we rely on the superbosonization formula [Littelmann, Sommers, Zirnbauer, 2008].", "revisions": [ { "version": "v1", "updated": "2019-08-05T14:48:27.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52" ], "keywords": [ "singular value", "optimal lower bound", "shifted ginibre ensemble", "optimal lower tail estimate", "large random matrix" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }