{ "id": "1908.01448", "version": "v1", "published": "2019-08-05T02:42:51.000Z", "updated": "2019-08-05T02:42:51.000Z", "title": "Characterizations of the Hardy space $\\mathcal{H}_{FIO}^{1}(\\mathbb{R}^{n})$ for Fourier Integral Operators", "authors": [ "Zhijie Fan", "Naijia Liu", "Jan Rozendaal", "Liang Song" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "The Hardy spaces for Fourier integral operators $\\mathcal{H}_{FIO}^{p}(\\mathbb{R}^{n})$, for $1\\leq p\\leq \\infty$, were introduced by H.~Smith in \\cite{Smith98a} and A.~Hassell et al.~in \\cite{HaPoRo18}. In this article, we give several equivalent characterizations of $\\mathcal{H}_{FIO}^{1}(\\mathbb{R}^{n})$, for example in terms of Littlewood--Paley g functions and maximal functions. This answers a question from [Rozendaal,2019].", "revisions": [ { "version": "v1", "updated": "2019-08-05T02:42:51.000Z" } ], "analyses": { "subjects": [ "35S30", "42B30" ], "keywords": [ "fourier integral operators", "hardy space", "equivalent characterizations", "maximal functions", "littlewood-paley" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }