{ "id": "1908.00196", "version": "v1", "published": "2019-08-01T03:42:50.000Z", "updated": "2019-08-01T03:42:50.000Z", "title": "Alternating super-polynomials and super-coinvariants of finite reflection groups", "authors": [ "Joshua P Swanson" ], "comment": "18 pages, 1 table", "categories": [ "math.CO", "math.RT" ], "abstract": "Motivated by a recent conjecture of Zabrocki, Wallach described the alternants in the super-coinvariant algebra of the symmetric group in one set of commuting and one set of anti-commuting variables under the diagonal action. We give a type-independent generalization of Wallach's result to all real reflection groups $G$. As an intermediate step, we explicitly describe the alternating super-polynomials in $k[V] \\otimes \\Lambda(V)$ for all complex reflection groups, providing an analogue of a classic result of Solomon which describes the invariant super-polynomials in $k[V] \\otimes \\Lambda(V^*)$. Using our construction, we explicitly describe the alternating harmonics and coinvariants for all real reflection groups.", "revisions": [ { "version": "v1", "updated": "2019-08-01T03:42:50.000Z" } ], "analyses": { "subjects": [ "05E10" ], "keywords": [ "finite reflection groups", "alternating super-polynomials", "real reflection groups", "complex reflection groups", "invariant super-polynomials" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }