{ "id": "1908.00032", "version": "v1", "published": "2019-07-31T18:17:28.000Z", "updated": "2019-07-31T18:17:28.000Z", "title": "Why scalar products in the algebraic Bethe ansatz have determinant representation", "authors": [ "S. Belliard", "N. A. Slavnov" ], "comment": "16 pages, no figures", "categories": [ "math-ph", "cond-mat.stat-mech", "hep-th", "math.MP" ], "abstract": "We show that the scalar products of on-shell and off-shell Bethe vectors in the algebra1ic Bethe ansatz solvable models satisfy a system of linear equations. We find solutions to this system for a wide class of integrable models. We also apply our method to the XXX spin chain with broken $U(1)$ symmetry.", "revisions": [ { "version": "v1", "updated": "2019-07-31T18:17:28.000Z" } ], "analyses": { "keywords": [ "algebraic bethe ansatz", "scalar products", "determinant representation", "algebra1ic bethe ansatz solvable models", "bethe ansatz solvable models satisfy" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }