{ "id": "1907.13450", "version": "v1", "published": "2019-07-31T12:30:25.000Z", "updated": "2019-07-31T12:30:25.000Z", "title": "Ramanujan type of congruences modulo m for (l, m)-regular bipartitions", "authors": [ "T. Kathiravan" ], "categories": [ "math.NT" ], "abstract": "Let $B_{l,m}(n)$ denote the number of $(l,m)$-regular bipartitions of $n$. Recently, many authors proved several infinite families of congruences modulo $3$, $5$ and $11$ for $B_{l,m}(n)$. In this paper, using theta function identities to prove infinite families of congruences modulo $m$ for $(l,m)$-regular bipartitions, where $m\\in\\{3,11,13,17\\}$.", "revisions": [ { "version": "v1", "updated": "2019-07-31T12:30:25.000Z" } ], "analyses": { "subjects": [ "11P83", "05A17" ], "keywords": [ "congruences modulo", "ramanujan type", "regular bipartitions", "infinite families", "theta function identities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }