{ "id": "1907.13027", "version": "v1", "published": "2019-07-30T15:41:47.000Z", "updated": "2019-07-30T15:41:47.000Z", "title": "Boundedness of stable solutions to nonlinear equations involving the $p$-Laplacian", "authors": [ "Pietro Miraglio" ], "categories": [ "math.AP" ], "abstract": "We consider stable solutions to the equation $ -\\Delta_p u =f(u) $ in a smooth bounded domain $\\Omega\\subset\\mathbb{R}^n $ for a $ C^1 $ nonlinearity $f$. Either in the radial case, or for some model nonlinearities $f$ in a general domain, stable solutions are known to be bounded in the optimal dimension range $n2$.", "revisions": [ { "version": "v1", "updated": "2019-07-30T15:41:47.000Z" } ], "analyses": { "keywords": [ "stable solutions", "nonlinear equations", "boundedness", "nonradial case", "nonlinearity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }