{ "id": "1907.12466", "version": "v1", "published": "2019-07-29T14:57:30.000Z", "updated": "2019-07-29T14:57:30.000Z", "title": "Equiangular lines with a fixed angle", "authors": [ "Zilin Jiang", "Jonathan Tidor", "Yuan Yao", "Shengtong Zhang", "Yufei Zhao" ], "comment": "10 pages", "categories": [ "math.CO", "math.MG" ], "abstract": "Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. Fix $0 < \\alpha < 1$. Let $N_\\alpha(d)$ denote the maximum number of lines in $\\mathbb{R}^d$ with pairwise common angle $\\arccos \\alpha$. Let $k$ denote the minimum number (if it exists) of vertices of a graph whose adjacency matrix has spectral radius exactly $(1-\\alpha)/(2\\alpha)$. If $k < \\infty$, then $N_\\alpha(d) = \\lfloor k(d-1)/(k-1) \\rfloor$ for all sufficiently large $d$, and otherwise $N_\\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \\lfloor k(d-1)/(k-1) \\rfloor$ for every integer $k\\geq 2$ and all sufficiently large $d$.", "revisions": [ { "version": "v1", "updated": "2019-07-29T14:57:30.000Z" } ], "analyses": { "keywords": [ "equiangular lines", "fixed angle", "maximum number", "sufficiently large dimensions", "pairwise common angle" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }