{ "id": "1907.12097", "version": "v1", "published": "2019-07-28T15:37:10.000Z", "updated": "2019-07-28T15:37:10.000Z", "title": "On the simultaneous divisibility of class numbers of triples of imaginary quadratic fields", "authors": [ "Jaitra Chattopadhyay", "Subramani Muthukrishnan" ], "comment": "Comments are welcome", "categories": [ "math.NT" ], "abstract": "Let $k \\geq 1$ be a cube-free integer with $k \\equiv 1 \\pmod {9}$ and $\\gcd(k, 7\\cdot 571)=1$. In this paper, we prove the existence of infinitely many triples of imaginary quadratic fields $\\mathbb{Q}(\\sqrt{d})$, $\\mathbb{Q}(\\sqrt{d+1})$ and $\\mathbb{Q}(\\sqrt{d+k^2})$ with $d \\in \\mathbb{Z}$ such that the class number of each of them is divisible by $3$. This affirmatively answers a weaker version of a conjecture of Iizuka \\cite{iizuka-jnt}.", "revisions": [ { "version": "v1", "updated": "2019-07-28T15:37:10.000Z" } ], "analyses": { "keywords": [ "imaginary quadratic fields", "class number", "simultaneous divisibility", "cube-free integer", "weaker version" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }