{ "id": "1907.11750", "version": "v1", "published": "2019-07-26T18:44:04.000Z", "updated": "2019-07-26T18:44:04.000Z", "title": "On the codimension of the singular locus", "authors": [ "David Kazhdan", "Tamar Ziegler" ], "categories": [ "math.AG", "math.CO" ], "abstract": "Let $k$ be a field and $V$ an $k$-vector space. For a family $\\bar P=\\{ P_i\\}, \\ 1\\leq i\\leq c, $ of polynomials on $V$, we denote by $\\mathbb X _{\\bar P}\\subset V$ the subscheme defined by the ideal $(\\{ P_i\\}_{1\\leq i\\leq c})$. We show the existence of $\\gamma (c,d)$ such that varieties $\\mathbb X _{\\bar P}$ are smooth outside of codimension $m$, if $deg(P_i)\\leq d$ and $r(\\bar P)\\geq \\gamma (d,c) (1+m)^{\\gamma (d,c)}$, under the condition that either $char (k)=0$ or $char (k)>\\max (d, |\\bar d|)$, where $|\\bar d| = \\sum_{i=1}^c (d_i-1)$.", "revisions": [ { "version": "v1", "updated": "2019-07-26T18:44:04.000Z" } ], "analyses": { "keywords": [ "singular locus", "codimension", "vector space", "smooth outside" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }