{ "id": "1907.11105", "version": "v1", "published": "2019-07-24T09:15:01.000Z", "updated": "2019-07-24T09:15:01.000Z", "title": "The Good, the Bad and the Ugly: Augmenting a black-box model with expert knowledge", "authors": [ "Raoul Heese", "MichaƂ Walczak", "Lukas Morand", "Dirk Helm", "Michael Bortz" ], "comment": "International Conference on Artificial Neural Networks (ICANN) 2019", "categories": [ "cs.LG", "stat.ML" ], "abstract": "We address a non-unique parameter fitting problem in the context of material science. In particular, we propose to resolve ambiguities in parameter space by augmenting a black-box artificial neural network (ANN) model with two different levels of expert knowledge and benchmark them against a pure black-box model.", "revisions": [ { "version": "v1", "updated": "2019-07-24T09:15:01.000Z" } ], "analyses": { "keywords": [ "expert knowledge", "black-box artificial neural network", "pure black-box model", "augmenting", "non-unique parameter fitting problem" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }