{ "id": "1907.10353", "version": "v1", "published": "2019-07-24T10:37:26.000Z", "updated": "2019-07-24T10:37:26.000Z", "title": "Bounds on the number of simple modules in blocks of finite groups of Lie type", "authors": [ "Ruwen Hollenbach" ], "comment": "19 pages", "categories": [ "math.RT", "math.GR" ], "abstract": "Let $G$ be a simple, simply connected linear algebraic group of exceptional type defined over $\\mathbb{F}_q$ with Frobenius endomorphism $F: G \\to G$. In this work we give upper bounds on the number of simple modules in the quasi-isolated $\\ell$-blocks of $G^F$ and $G^F/Z(G^F)$ when $\\ell$ is bad for $G$.", "revisions": [ { "version": "v1", "updated": "2019-07-24T10:37:26.000Z" } ], "analyses": { "subjects": [ "20C15", "20C33" ], "keywords": [ "simple modules", "finite groups", "lie type", "simply connected linear algebraic group", "exceptional type" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }