{ "id": "1907.10212", "version": "v1", "published": "2019-07-24T02:36:44.000Z", "updated": "2019-07-24T02:36:44.000Z", "title": "Rewriting systems and the multiplicative structure in the cohomology of $π_1(Σ_{g_1}\\times\\cdots\\timesΣ_{g_n})$ with twisted $\\mathbb{Z}$-coefficients", "authors": [ "Natalia Cadavid-Aguilar", "Jesús González" ], "comment": "32 pages", "categories": [ "math.AT" ], "abstract": "Let $\\pi_g$ stand for the fundamental group of the closed orientable surface $\\Sigma_g$ of genus $g$. We use a finite complete rewriting system for $\\pi_g$ in order to produce an explicit contracting homotopy for the standard minimal $\\pi_g$-free resolution $M_*^g$ of the trivial $\\pi_g$-module $\\mathbb{Z}$. This allows us to construct an explicit diagonal approximation for any $\\mathbb{Z}$-tensor product $M_*^{g_1}\\otimes\\cdots\\otimes M_*^{g_n}$ which, in turn, yields an efficient method to compute the structure of the cohomology product maps $H^*(\\pi_{g_1}\\times\\cdots\\times\\pi_{g_n};M)\\otimes H^*(\\pi_{g_1}\\times\\cdots\\times\\pi_{g_n};M')\\to H^*(\\pi_{g_1}\\times\\cdots\\times\\pi_{g_n};M\\otimes M').$ Details and explicit examples are spelled out for $n=1$ and $n=2$ when the abelian group structure underlying both $M$ and $M'$ is $\\mathbb{Z}$.", "revisions": [ { "version": "v1", "updated": "2019-07-24T02:36:44.000Z" } ], "analyses": { "subjects": [ "20J06", "20F10", "68Q42" ], "keywords": [ "multiplicative structure", "coefficients", "cohomology product maps", "finite complete rewriting system", "abelian group structure" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }