{ "id": "1907.09398", "version": "v1", "published": "2019-07-16T05:26:02.000Z", "updated": "2019-07-16T05:26:02.000Z", "title": "Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups", "authors": [ "Hua Wang" ], "comment": "28 pages. arXiv admin note: text overlap with arXiv:1802.08550, arXiv:1907.03573", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $\\mathcal L=-\\Delta_{\\mathbb H^n}+V$ be a Schr\\\"odinger operator on the Heisenberg group $\\mathbb H^n$, where $\\Delta_{\\mathbb H^n}$ is the sublaplacian on $\\mathbb H^n$ and the nonnegative potential $V$ belongs to the reverse H\\\"older class $RH_q$ with $q\\geq Q/2$. Here $Q=2n+2$ is the homogeneous dimension of $\\mathbb H^n$. Assume that $\\{e^{-s\\mathcal L}\\}_{s>0}$ is the heat semigroup generated by $\\mathcal L$. The Littlewood-Paley function $\\mathfrak{g}_{\\mathcal L}$ and the Lusin area integral $\\mathcal{S}_{\\mathcal L}$ associated with the Schr\\\"odinger operator $\\mathcal L$ are defined, respectively, by \\begin{equation*} \\mathfrak{g}_{\\mathcal L}(f)(u) := \\bigg(\\int_0^{\\infty}\\bigg|s\\frac{d}{ds} e^{-s\\mathcal L}f(u) \\bigg|^2\\frac{ds}{s}\\bigg)^{1/2} \\end{equation*} and \\begin{equation*} \\mathcal{S}_{\\mathcal L}(f)(u) := \\bigg(\\iint_{\\Gamma(u)} \\bigg|s\\frac{d}{ds} e^{-s\\mathcal L}f(v) \\bigg|^2 \\frac{dvds}{s^{Q/2+1}}\\bigg)^{1/2}, \\end{equation*} where \\begin{equation*} \\Gamma(u) := \\big\\{(v,s)\\in\\mathbb H^n\\times(0,\\infty): |u^{-1}v| < \\sqrt{s\\,}\\big\\}. \\end{equation*} In this paper the author first introduces a class of Morrey spaces associated with the Schr\\\"odinger operator $\\mathcal L$ on $\\mathbb H^n$. Then by using some pointwise estimates of the kernels related to the nonnegative potential $V$, the author establishes the boundedness properties of these two operators $\\mathfrak{g}_{\\mathcal L}$ and $\\mathcal{S}_{\\mathcal L}$ acting on the Morrey spaces. It can be shown that the same conclusions also hold for the operators $\\mathfrak{g}_{\\sqrt{\\mathcal L}}$ and $\\mathcal{S}_{\\sqrt{\\mathcal L}}$ with respect to the Poisson semigroup $\\{e^{-s\\sqrt{\\mathcal L}}\\}_{s>0}$.", "revisions": [ { "version": "v1", "updated": "2019-07-16T05:26:02.000Z" } ], "analyses": { "subjects": [ "42B20", "35J10", "22E25", "22E30" ], "keywords": [ "morrey spaces", "nonnegative potential", "heisenberg group", "schrödinger operators", "lusin functions" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }