{ "id": "1907.09093", "version": "v1", "published": "2019-07-22T02:49:46.000Z", "updated": "2019-07-22T02:49:46.000Z", "title": "Dual pairs in the Pin-group and duality for the corresponding spinorial representation", "authors": [ "Clément Guérin", "Gang Liu", "Allan Merino" ], "comment": "22 pages", "categories": [ "math.RT" ], "abstract": "In this paper, we give a complete picture of Howe correspondence for the setting ($O(E, b), Pin(E, b), \\Pi$), where $O(E, b)$ is an orthogonal group (real or complex), $Pin(E, b)$ is the two-fold Pin-covering of $O(E, b)$, and $\\Pi$ is the spinorial representation of $Pin(E, b)$. More precisely, for a dual pair ($G, G'$) in $O(E, b)$, we determine explicitly the nature of its preimages $(\\tilde{G}, \\tilde{G'})$ in $Pin(E, b)$, and prove that apart from some exceptions, $(\\tilde{G}, \\tilde{G'})$ is always a dual pair in $Pin(E, b)$; then we establish the Howe correspondence for $\\Pi$ with respect to $(\\tilde{G}, \\tilde{G'})$.", "revisions": [ { "version": "v1", "updated": "2019-07-22T02:49:46.000Z" } ], "analyses": { "subjects": [ "22E46", "20G05" ], "keywords": [ "dual pair", "corresponding spinorial representation", "howe correspondence", "complete picture", "orthogonal group" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }