{ "id": "1907.08655", "version": "v1", "published": "2019-07-19T19:24:43.000Z", "updated": "2019-07-19T19:24:43.000Z", "title": "Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series", "authors": [ "Michel Laurent", "Arnaldo Nogueira" ], "categories": [ "math.DS", "math.NT" ], "abstract": "Let $f : [0,1)\\rightarrow [0,1)$ be a $2$-interval piecewise affine increasing map which is injective but not surjective. Such a map $f$ has a rotation number and can be parametrized by three real numbers. We make fully explicit the dynamics of $f$ thanks to two specific functions $\\delta$ and $\\phi$ depending on these parameters whose definitions involve Hecke-Mahler series. As an application, we show that the rotation number of $f$ is rational, when the three parameters are algebraic numbers.", "revisions": [ { "version": "v1", "updated": "2019-07-19T19:24:43.000Z" } ], "analyses": { "keywords": [ "piecewise affine maps", "hecke-mahler series", "rotation number", "interval piecewise affine increasing map", "real numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }