{ "id": "1907.07900", "version": "v1", "published": "2019-07-18T06:51:06.000Z", "updated": "2019-07-18T06:51:06.000Z", "title": "Multi-marginal Entropy-Transport with repulsive cost", "authors": [ "Augusto Gerolin", "Anna Kausamo", "Tapio Rajala" ], "comment": "20 pages, 1 figure", "categories": [ "math.AP", "math-ph", "math.MP", "math.OC" ], "abstract": "In this paper we study theoretical properties of the entropy-transport functional with repulsive cost functions. We provide sufficient conditions for the existence of a minimizer in a class of metric spaces and prove the $\\Gamma$-convergence of the entropy-transport functional to a multi-marginal optimal transport problem with a repulsive cost. We also prove the entropy-regularized version of the Kantorovich duality.", "revisions": [ { "version": "v1", "updated": "2019-07-18T06:51:06.000Z" } ], "analyses": { "keywords": [ "multi-marginal entropy-transport", "entropy-transport functional", "multi-marginal optimal transport problem", "study theoretical properties", "kantorovich duality" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }