{ "id": "1907.06425", "version": "v1", "published": "2019-07-15T10:53:12.000Z", "updated": "2019-07-15T10:53:12.000Z", "title": "Flag-transitive non-symmetric $2$-designs with $(r,λ)=1$ and exceptional groups of Lie type", "authors": [ "Yongli Zhang", "Shenglin Zhou" ], "categories": [ "math.CO", "math.GR" ], "abstract": "This paper determined all pairs $(\\mathcal{D},G)$ where $\\mathcal{D}$ is a non-symmetric 2-$(v,k,\\lambda)$ design with $(r,\\lambda)=1$ and $G$ is the almost simple flag-transitive automorphism group of $\\mathcal{D}$ with an exceptional socle of Lie type. We prove that if $T\\trianglelefteq G\\leq Aut(T)$ where $T$ is an exceptional group of Lie type, then $T$ must be the Ree group or Suzuki group, and there are five classes of non-isomorphic designs $\\mathcal{D}$.", "revisions": [ { "version": "v1", "updated": "2019-07-15T10:53:12.000Z" } ], "analyses": { "keywords": [ "lie type", "exceptional group", "flag-transitive non-symmetric", "simple flag-transitive automorphism group", "ree group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }