{ "id": "1907.06122", "version": "v1", "published": "2019-07-13T20:16:39.000Z", "updated": "2019-07-13T20:16:39.000Z", "title": "Improved Bounds for Hermite-Hadamard Inequalities in Higher Dimensions", "authors": [ "Thomas Beck", "Barbara Brandolini", "Krzysztof Burdzy", "Antoine Henrot", "Jeffrey J. Langford", "Simon Larson", "Robert G. Smits", "Stefan Steinerberger" ], "categories": [ "math.CA", "math.FA", "math.MG" ], "abstract": "Let $\\Omega \\subset \\mathbb{R}^n$ be a convex domain and let $f:\\Omega \\rightarrow \\mathbb{R}$ be a positive, subharmonic function (i.e. $\\Delta f \\geq 0$). Then $$ \\frac{1}{|\\Omega|} \\int_{\\Omega}{f dx} \\leq \\frac{c_n}{ |\\partial \\Omega| } \\int_{\\partial \\Omega}{ f d\\sigma},$$ where $c_n \\leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \\geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \\Omega_2 \\subset \\Omega_1 \\subset \\mathbb{R}^n$: $$ \\frac{|\\partial \\Omega_1|}{|\\Omega_1|} \\frac{| \\Omega_2|}{|\\partial \\Omega_2|} \\leq n.$$", "revisions": [ { "version": "v1", "updated": "2019-07-13T20:16:39.000Z" } ], "analyses": { "keywords": [ "higher dimensions", "hermite-hadamard inequalities", "convex domain", "optimal constant satisfies", "sharp geometric inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }