{ "id": "1907.05968", "version": "v1", "published": "2019-07-12T21:52:43.000Z", "updated": "2019-07-12T21:52:43.000Z", "title": "Local to global property in free groups", "authors": [ "Ofir David" ], "comment": "4 figures", "categories": [ "math.GR" ], "abstract": "The local to global property for an equation $\\psi$ over a group G asks to show that $\\psi$ is solvable in G if and only if it is solvable in every finite quotient of G. In this paper we focus that in order to prove this local to global property for free groups $G=F_k$, it is enough to prove for k less or equal the number of parameters in $\\psi$. In particular we use it to show that the local to global property holds for m-powers in free groups.", "revisions": [ { "version": "v1", "updated": "2019-07-12T21:52:43.000Z" } ], "analyses": { "subjects": [ "20E05", "20E18", "20F34" ], "keywords": [ "free groups", "global property holds", "finite quotient", "parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }