{ "id": "1907.05966", "version": "v1", "published": "2019-07-12T21:46:21.000Z", "updated": "2019-07-12T21:46:21.000Z", "title": "Upper bounds for inverse domination in graphs", "authors": [ "Elliot Krop", "Jessica McDonald", "Gregory J. Puleo" ], "comment": "9 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "In any graph $G$, the domination number $\\gamma(G)$ is at most the independence number $\\alpha(G)$. The Inverse Domination Conjecture says that, in any isolate-free $G$, there exists pair of vertex-disjoint dominating sets $D, D'$ with $|D|=\\gamma(G)$ and $|D'| \\leq \\alpha(G)$. Here we prove that this statement is true if the upper bound $\\alpha(G)$ is replaced by $\\frac{3}{2}\\alpha(G) - 1$ (and $G$ is not a clique). We also prove that the conjecture holds whenever $\\gamma(G)\\leq 5$ or $|V(G)|\\leq 16$.", "revisions": [ { "version": "v1", "updated": "2019-07-12T21:46:21.000Z" } ], "analyses": { "subjects": [ "05C69" ], "keywords": [ "upper bound", "inverse domination conjecture says", "domination number", "conjecture holds", "independence number" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }