{ "id": "1907.05769", "version": "v1", "published": "2019-07-12T14:37:20.000Z", "updated": "2019-07-12T14:37:20.000Z", "title": "Herglotz' variational principle and Lax-Oleinik evolution", "authors": [ "Piermarco Cannarsa", "Wei Cheng", "Liang Jin", "Kaizhi Wang", "Jun Yan" ], "categories": [ "math.AP", "math.DS" ], "abstract": "We develop an elementary method to give a Lipschitz estimate for the minimizers in the problem of Herglotz' variational principle proposed in \\cite{CCWY2018} in the time-dependent case. We deduce Erdmann's condition and the Euler-Lagrange equation separately under different sets of assumptions, by using a generalized du Bois-Reymond lemma. As an application, we obtain a representation formula for the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation \\begin{align*} D_tu(t,x)+H(t,x,D_xu(t,x),u(t,x))=0 \\end{align*} and study the related Lax-Oleinik evolution.", "revisions": [ { "version": "v1", "updated": "2019-07-12T14:37:20.000Z" } ], "analyses": { "keywords": [ "variational principle", "deduce erdmanns condition", "elementary method", "cauchy problem", "viscosity solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }