{ "id": "1907.04753", "version": "v1", "published": "2019-07-10T14:31:20.000Z", "updated": "2019-07-10T14:31:20.000Z", "title": "Endpoint estimates for the maximal function over prime numbers", "authors": [ "Bartosz Trojan" ], "comment": "to appear in Journal of Fourier Analysis And Applications", "categories": [ "math.DS", "math.CA", "math.NT" ], "abstract": "Given an ergodic dynamical system $(X, \\mathcal{B}, \\mu, T)$, we prove that for each function $f$ belonging to the Orlicz space $L(\\log L)^2(\\log \\log L)(X, \\mu)$, the ergodic averages \\[ \\frac{1}{\\pi(N)} \\sum_{p \\in \\mathbb{P}_N} f\\big(T^p x\\big), \\] converge for $\\mu$-almost all $x \\in X$, where $\\mathbb{P}_N$ is the set of prime numbers not larger that $N$ and $\\pi(N) = \\# \\mathbb{P}_N$.", "revisions": [ { "version": "v1", "updated": "2019-07-10T14:31:20.000Z" } ], "analyses": { "subjects": [ "37A45", "46E30", "42B25" ], "keywords": [ "prime numbers", "maximal function", "endpoint estimates", "ergodic dynamical system", "ergodic averages" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }