{ "id": "1907.04657", "version": "v1", "published": "2019-07-10T12:15:20.000Z", "updated": "2019-07-10T12:15:20.000Z", "title": "A functorial approach to monomorphism categories for species I", "authors": [ "Nan Gao", "Julian Külshammer", "Sondre Kvamme", "Chrysostomos Psaroudakis" ], "comment": "59 pages", "categories": [ "math.RT", "math.CT", "math.RA" ], "abstract": "For any generalised species over a locally bounded quiver we investigate abstract versions of the monomorphism category as studied by Ringel and Schmidmeier. We prove that analogues of the kernel and cokernel functor send almost split sequences over the path algebra and the preprojective algebra to split or almost split sequences in the monomorphism category.", "revisions": [ { "version": "v1", "updated": "2019-07-10T12:15:20.000Z" } ], "analyses": { "subjects": [ "13C14", "16G20", "16G70", "18A25", "18C20" ], "keywords": [ "monomorphism category", "functorial approach", "split sequences", "cokernel functor send", "abstract versions" ], "note": { "typesetting": "TeX", "pages": 59, "language": "en", "license": "arXiv", "status": "editable" } } }