{ "id": "1907.04520", "version": "v1", "published": "2019-07-10T05:55:06.000Z", "updated": "2019-07-10T05:55:06.000Z", "title": "An elliptic partial differential equation and its application", "authors": [ "Dragos-Patru Covei", "Traian A. Pirvu" ], "categories": [ "math.AP" ], "abstract": "This paper deals with the following elliptic equation \\begin{equation*} -2\\left\\vert \\sigma \\right\\vert ^{2}\\Delta z+\\left\\vert \\nabla z\\right\\vert ^{2}+4\\alpha z=4\\left\\vert x\\right\\vert ^{2}\\text{ for }x\\in \\mathbb{R}^{N}% \\text{, (}N\\geq 1\\text{),} \\end{equation*}% where $\\alpha >0$ is a real parameter and $\\sigma $ is a vector from $% \\mathbb{R}^{N}$. The solution method is based on the sub- and super-solutions method. The case $N>1$ seemed not considered before. This equation models a stochastic production planning problem.", "revisions": [ { "version": "v1", "updated": "2019-07-10T05:55:06.000Z" } ], "analyses": { "keywords": [ "elliptic partial differential equation", "application", "stochastic production planning problem", "real parameter", "solution method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }