{ "id": "1907.04287", "version": "v1", "published": "2019-07-09T16:48:08.000Z", "updated": "2019-07-09T16:48:08.000Z", "title": "Approximation in the mean by rational functions II", "authors": [ "Liming Yang" ], "categories": [ "math.FA" ], "abstract": "For $1\\le t < \\infty$, a compact subset $K\\subset\\mathbb C$, and a finite positive measure $\\mu$ supported on $K$, $R^t(K, \\mu)$ denotes the closure in $L^t(\\mu)$ of rational functions with poles off $K$. Conway and Yang (2019) introduced the concept of non-removable boundary $\\mathcal F$ and removable set $\\mathcal R = K\\setminus \\mathcal F$ for $R^t(K, \\mu)$. We continue the previous work and obtain the decomposition theorem for $R^t(K, \\mu)$. Let $H^\\infty_{\\mathcal R}(A_{\\mathcal R})$ be the weak$^*$ closure in $L^\\infty (A_{\\mathcal R})$ of the functions that are bounded analytic off compact subsets of $\\mathcal F$, where $A_{\\mathcal R}$ denotes the area measure restricted to $\\mathcal R$. We prove: There exists a Borel partion $\\{\\Delta_n\\}_{n\\ge 0}$ of $\\text{spt}(\\mu )$ such that \\[ \\ R^t(K,\\mu) = L^t(\\mu |_{\\Delta_0})\\oplus \\bigoplus_{n=1}^\\infty R^t(K_n, \\mu |_{\\Delta_n}), \\] satisfying, for $n \\ge 1$, (a) $R^t(K_n, \\mu |_{\\Delta_n})$ contains no non-trival characteristic functions; (b) $\\mathcal R_n$ is $\\gamma$-connected, where $\\mathcal R_n$ is the removable set for $R^t(K_n, \\mu |_{\\Delta_n})$; (c) $K_n \\subset \\text{clos}(\\mathcal R_n)$; (d) $K_n \\cap K_m \\subset \\mathcal F$, for $n\\ne m$ ($m \\ge 1$); and (e) there exists an isometric isomorphism and weak$^*$ homeomorphism $\\rho_n$ from $R^t(K_n, \\mu |_{\\Delta_n}) \\cap L^\\infty (\\mu |_{\\Delta_n})$ onto $H^\\infty_{\\mathcal R_n}(A_{\\mathcal R_n })$.", "revisions": [ { "version": "v1", "updated": "2019-07-09T16:48:08.000Z" } ], "analyses": { "keywords": [ "rational functions", "approximation", "compact subset", "non-trival characteristic functions", "removable set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }