{ "id": "1907.03852", "version": "v1", "published": "2019-07-08T20:23:05.000Z", "updated": "2019-07-08T20:23:05.000Z", "title": "Quasi-optimal adaptive mixed finite element methods for controlling natural norm errors", "authors": [ "Yuwen Li" ], "comment": "24 pages", "categories": [ "math.NA", "cs.NA" ], "abstract": "For a generalized Hodge--Laplace equation, we prove the quasi-optimal convergence rate of an adaptive mixed finite element method controlling the error in the natural mixed variational norm. In particular, we obtain new quasi-optimal adaptive mixed methods for the scalar Poisson, vector Poisson, and Stokes equations. Comparing to existing adaptive mixed methods, the new methods control errors in both two variables.", "revisions": [ { "version": "v1", "updated": "2019-07-08T20:23:05.000Z" } ], "analyses": { "subjects": [ "65N12", "65N15", "65N30", "65N50", "41A25" ], "keywords": [ "adaptive mixed finite element method", "quasi-optimal adaptive mixed finite element", "controlling natural norm errors" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }