{ "id": "1907.03737", "version": "v1", "published": "2019-07-08T17:41:30.000Z", "updated": "2019-07-08T17:41:30.000Z", "title": "Easton's theorem for the tree property below aleph_omega", "authors": [ "Sarka Stejskalova" ], "comment": "24 pages, submitted", "categories": [ "math.LO" ], "abstract": "Starting with infinitely many supercompact cardinals, we show that the tree property at every cardinal $\\aleph_n$, $1 < n <\\omega$, is consistent with an arbitrary continuum function below $\\aleph_\\omega$ which satisfies $2^{\\aleph_n} > \\aleph_{n+1}$, $n<\\omega$. Thus the tree property has no provable effect on the continuum function below $\\aleph_\\omega$ except for the restriction that the tree property at $\\kappa^{++}$ implies $2^\\kappa>\\kappa^+$ for every infinite $\\kappa$.", "revisions": [ { "version": "v1", "updated": "2019-07-08T17:41:30.000Z" } ], "analyses": { "keywords": [ "tree property", "eastons theorem", "arbitrary continuum function", "supercompact cardinals", "consistent" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }