{ "id": "1907.03269", "version": "v1", "published": "2019-07-07T10:57:26.000Z", "updated": "2019-07-07T10:57:26.000Z", "title": "The homology of moduli stacks of complexes", "authors": [ "Jacob Gross" ], "comment": "Comments welcome", "categories": [ "math.AG" ], "abstract": "We compute the $E$-homology of the moduli stack $\\mathcal{M}$ of objects in the derived category of a smooth complex projective variety $X$, where $E$ is a complex-oriented homology theory with rational coefficient ring. For curves, surfaces, and some 3- and 4-folds we identify Joyce's vertex algebra construction on $E_\\ast(\\mathcal{M})$ with a generalised super-lattice vertex algebra associated to $K^0_{\\rm top}(X^{\\rm an}) \\oplus K^1_{\\rm top}(X^{\\rm an})$.", "revisions": [ { "version": "v1", "updated": "2019-07-07T10:57:26.000Z" } ], "analyses": { "keywords": [ "moduli stack", "identify joyces vertex algebra construction", "smooth complex projective variety", "generalised super-lattice vertex algebra", "rational coefficient" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }