{ "id": "1907.02210", "version": "v1", "published": "2019-07-04T04:08:55.000Z", "updated": "2019-07-04T04:08:55.000Z", "title": "The Light Ray transform on Lorentzian manifolds", "authors": [ "Matti Lassas", "Lauri Oksanen", "Plamen Stefanov", "Gunther Uhlmann" ], "categories": [ "math.AP", "math.DG" ], "abstract": "We study the weighted light ray transform $L$ of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze $L$ as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function $f$ from its the weighted light ray transform $Lf$ by a suitable filtered back-projection.", "revisions": [ { "version": "v1", "updated": "2019-07-04T04:08:55.000Z" } ], "analyses": { "subjects": [ "53C65", "35R30", "35A27" ], "keywords": [ "lorentzian manifold", "weighted light ray transform", "fourier integral operator", "conjugate points", "back-projection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }