{ "id": "1907.00882", "version": "v1", "published": "2019-07-01T15:55:26.000Z", "updated": "2019-07-01T15:55:26.000Z", "title": "An overview on constrained critical points of Dirichlet integrals", "authors": [ "Lorenzo Brasco", "Giovanni Franzina" ], "comment": "41 pages, 5 figures. This paper evolved from a set of notes for a talk delivered by the first author at the workshop \"Nonlinear Meeting in Turin 2019\"", "categories": [ "math.AP", "math.SP" ], "abstract": "We consider a natural generalization of the eigenvalue problem for the Laplacian with homogeneous Dirichlet boundary conditions. This corresponds to look for the critical values of the Dirichlet integral, constrained to the unit $L^q$ sphere. We collect some results, present some counter-examples and compile a list of open problems.", "revisions": [ { "version": "v1", "updated": "2019-07-01T15:55:26.000Z" } ], "analyses": { "subjects": [ "35P30", "49R05" ], "keywords": [ "constrained critical points", "dirichlet integral", "homogeneous dirichlet boundary conditions", "eigenvalue problem", "open problems" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }