{ "id": "1907.00629", "version": "v1", "published": "2019-07-01T09:41:36.000Z", "updated": "2019-07-01T09:41:36.000Z", "title": "Semi-classical limit of confined fermionic systems in homogeneous magnetic fields", "authors": [ "Søren Fournais", "Peter S. Madsen" ], "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We consider a system of $ N $ interacting fermions in $ \\mathbb{R}^3 $ confined by an external potential and in the presence of a homogeneous magnetic field. The intensity of the interaction has the mean-field scaling $ 1/N $. With a semi-classical parameter $ \\hbar \\sim N^{-1/3} $, we prove convergence in the large $ N $ limit to the appropriate Magnetic Thomas-Fermi type model with various strength scalings of the magnetic field.", "revisions": [ { "version": "v1", "updated": "2019-07-01T09:41:36.000Z" } ], "analyses": { "keywords": [ "homogeneous magnetic field", "confined fermionic systems", "semi-classical limit", "appropriate magnetic thomas-fermi type model", "external potential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }