{ "id": "1906.11762", "version": "v1", "published": "2019-06-27T16:07:54.000Z", "updated": "2019-06-27T16:07:54.000Z", "title": "$F_σ$ Games and Reflection in $L(\\mathbb{R})$", "authors": [ "J. P. Aguilera" ], "comment": "20 pages. This version: February 2019", "categories": [ "math.LO" ], "abstract": "It is shown that determinacy of $F_\\sigma$ games of length $\\omega^2$ is equivalent to the existence of a transitive model of KP + AD which contains the reals and reflects $\\Pi_1$ facts about the next admissible set.", "revisions": [ { "version": "v1", "updated": "2019-06-27T16:07:54.000Z" } ], "analyses": { "keywords": [ "reflection", "determinacy", "equivalent", "transitive model" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }