{ "id": "1906.11451", "version": "v1", "published": "2019-06-27T06:28:42.000Z", "updated": "2019-06-27T06:28:42.000Z", "title": "Some non-vanishing results on log canonical pairs of dimension 4", "authors": [ "Fanjun Meng" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "Let $(X,\\Delta)$ be a log canonical pair over $\\mathbb{C}$ with $X$ a normal projective variety, $\\Delta$ an effective $\\mathbb{Q}$-divisor, and $K_X+\\Delta$ nef. We give a non-vanishing criterion for $K_X+\\Delta$ in dimension $n$ with $X$ uniruled, assuming various conjectures of LMMP in dimensions (up to) $n-1$ or $n$, and a semi-ampleness criterion in the irregular case. In particular, we obtain that if $X$ is a uniruled $4$-fold, then $\\kappa(K_X+\\Delta)\\geq 0$ and if $X$ is a $4$-fold with $q(X)>0$, then $K_X+\\Delta$ is semi-ample.", "revisions": [ { "version": "v1", "updated": "2019-06-27T06:28:42.000Z" } ], "analyses": { "keywords": [ "log canonical pair", "non-vanishing results", "normal projective variety", "semi-ampleness criterion", "irregular case" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }