{ "id": "1906.11227", "version": "v1", "published": "2019-06-26T17:39:15.000Z", "updated": "2019-06-26T17:39:15.000Z", "title": "Nonnegative sum-symmetric matrices, optimal-score partitions, and optimal resource allocation", "authors": [ "Iosif Pinelis" ], "comment": "9 pages; revised version of a submitted paper", "categories": [ "math.OC", "math.CO" ], "abstract": "The main result of the note describes certain optimal-score partitions, which can be interpreted as optimal resource allocations. This result is based on the fact that any nonnegative square matrix whose column sums are the same as the corresponding row sums can be represented as the sum of circuit matrices.", "revisions": [ { "version": "v1", "updated": "2019-06-26T17:39:15.000Z" } ], "analyses": { "subjects": [ "49K30", "15B48", "26D15", "90C46", "52A40", "05A05", "15A15", "15A45", "15B33", "15B36", "15B51", "90C27" ], "keywords": [ "optimal resource allocation", "nonnegative sum-symmetric matrices", "optimal-score partitions", "circuit matrices", "corresponding row sums" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }