{ "id": "1906.10937", "version": "v1", "published": "2019-06-26T09:38:44.000Z", "updated": "2019-06-26T09:38:44.000Z", "title": "Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in $\\mathbb{R}^{2}$", "authors": [ "Pietro d'Avenia", "Chao Ji" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "In this paper we study the following nonlinear Schr\\\"{o}dinger equation with magnetic field \\[ \\Big(\\frac{\\varepsilon}{i}\\nabla-A(x)\\Big)^{2}u+V(x)u=f(| u|^{2})u,\\quad x\\in\\mathbb{R}^{2}, \\] where $\\varepsilon>0$ is a parameter, $V:\\mathbb{R}^{2}\\rightarrow \\mathbb{R}$ and $A: \\mathbb{R}^{2}\\rightarrow \\mathbb{R}^{2}$ are continuous potentials and $f:\\mathbb{R}^{2}\\rightarrow \\mathbb{R}$ has exponential critical growth. Under a local assumption on the potential $V$, by variational methods, penalization technique, and Ljusternick-Schnirelmann theory, we prove multiplicity and concentration of solutions for $\\varepsilon$ small.", "revisions": [ { "version": "v1", "updated": "2019-06-26T09:38:44.000Z" } ], "analyses": { "subjects": [ "35J20", "35J60", "35B33" ], "keywords": [ "exponential critical growth", "magnetic schrödinger equation", "concentration results", "multiplicity", "ljusternick-schnirelmann theory" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }