{ "id": "1906.10723", "version": "v1", "published": "2019-06-25T18:51:21.000Z", "updated": "2019-06-25T18:51:21.000Z", "title": "Algebraic cycles on hyperplane sections of hypersurfaces in $\\mathbb P^n$ for $n=5,6$", "authors": [ "Kalyan Banerjee" ], "comment": "9 pages, comments are welcome", "categories": [ "math.AG", "math.KT" ], "abstract": "Let $X$ be a cubic hypersurface in $\\mathbb P^6$ or a hypersurface of degree greater than equal to $7$ in $\\mathbb P^5$. In this note we try to understand, for a very general hyperplane section of $X$, the non-injectivity locus of the corresponding push-forward homomorphism at the level of Chow group of certain dimension.", "revisions": [ { "version": "v1", "updated": "2019-06-25T18:51:21.000Z" } ], "analyses": { "subjects": [ "14C25" ], "keywords": [ "algebraic cycles", "general hyperplane section", "degree greater", "chow group", "cubic hypersurface" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }