{ "id": "1906.10349", "version": "v1", "published": "2019-06-25T06:58:09.000Z", "updated": "2019-06-25T06:58:09.000Z", "title": "Optimal extension of the Fourier transform and convolution operator on compact groups", "authors": [ "Manoj Kumar", "N. Shravan Kumar" ], "categories": [ "math.FA" ], "abstract": "Let $G$ be a compact group (not necessarily abelian) and let $\\Phi$ be a Young function satisfying the $\\Delta_2$-condition. We determine the optimal domain and the associated extended operator for both Fourier transform and the convolution operator defined on the Orlicz spaces $L^\\Phi(G).$", "revisions": [ { "version": "v1", "updated": "2019-06-25T06:58:09.000Z" } ], "analyses": { "subjects": [ "43A15", "43A30", "46G10" ], "keywords": [ "fourier transform", "convolution operator", "compact group", "optimal extension", "optimal domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }