{ "id": "1906.10268", "version": "v1", "published": "2019-06-24T23:47:25.000Z", "updated": "2019-06-24T23:47:25.000Z", "title": "Finite-rank perturbations of random band matrices via infinitesimal free probability", "authors": [ "Benson Au" ], "comment": "34 pages, 5 figures", "categories": [ "math.PR", "math.OA" ], "abstract": "We prove a sharp $\\sqrt{N}$ transition for the infinitesimal distribution of a periodically banded GUE matrix. For band widths $b_N = \\Omega(\\sqrt{N})$, we further prove that our model is infinitesimally free from the matrix units and the normalized all-ones matrix. Our results allow us to extend previous work of Shlyakhtenko on finite-rank perturbations of Wigner matrices in the infinitesimal framework. For finite-rank perturbations of our model, we find outliers at the classical positions from the deformed Wigner ensemble.", "revisions": [ { "version": "v1", "updated": "2019-06-24T23:47:25.000Z" } ], "analyses": { "subjects": [ "15B52", "46L53", "46L54", "60B20" ], "keywords": [ "finite-rank perturbations", "random band matrices", "infinitesimal free probability", "wigner matrices", "infinitesimal distribution" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }